
A Revised Discrete Particle Swarm Optimization for Cloud Workflow
Scheduling

Zhangjun Wu1,2, Zhiwei Ni1, Lichuan Gu1
1Institute of Intelligent Management

Hefei University of Technology
Hefei, China

wuzhangjun@mail.hfut.edu.cn
nzwgd@hfut.edu.cn

gulichuan@ahan.edu.cn

Xiao Liu2

2Faculty of Information and Communication Technologies
Swinburne University of Technology

Melbourne, Australia
xliu@swin.edu.au

Abstract-A cloud workflow system is a type of platform
service which facilitates the automation of distributed
applications based on the novel cloud infrastructure. Compared
with grid environment, data transfer is a big overhead for cloud
workflows due to the market-oriented business model in the
cloud environments. In this paper, a Revised Discrete Particle
Swarm Optimization (RDPSO) is proposed to schedule
applications among cloud services that takes both data
transmission cost and computation cost into account.
Experiment is conducted with a set of workflow applications by
varying their data communication costs and computation costs
according to a cloud price model. Comparison is made on
makespan and cost optimization ratio and the cost savings with
RDPSO, the standard PSO and BRS (Best Resource Selection)
algorithm. Experimental results show that the proposed
RDPSO algorithm can achieve much more cost savings and
better performance on makespan and cost optimization.

Keywords: discrete particle swarm optimization, workflow
scheduling, cloud computing.

I. INTRODUCTION

Cloud computing is emerging as the latest distributed
computing paradigm and attracts increasing interests of
researchers in the area of Distributed and Parallel
Computing[1], Service Oriented Computing[2] and Software
Engineering[3]. Generally speaking, the function of a cloud
workflow system and its role in a cloud computing
environment, is to facilitate the automation of user submitted
workflow applications where the tasks have precedence
relationships defined by graph-based modeling tools such as
DAG (directed acyclic graph) and Petri Nets[4], or
language-based modeling tools such as XPDL (XML Process
Definition Language)[17].

Among many others, one of the most important aspects
which differentiate a cloud workflow system from its other
counterparts is the market-oriented business model. Such a
seemed small change actually brings significant innovations
to conventional computing paradigms since they are usually
based on non-business community models where resources
are shared and free to be accessed by community
members[5]. Meanwhile, application data can be hosted on
different storage resources at the global cloud infrastructure.
When one task needs to process data from different data

centers, moving the data becomes a challenge[6]. In order to
efficiently and cost effectively schedule the tasks and data of
applications among cloud services, end user QoS-based
scheduling strategies are implemented, such as those for
minimizing makespan, minimizing total execution cost and
balancing the load of resources[7]. In this paper, we focus on
minimizing the execution time and the execution cost of
applications on these resources provided by Cloud service
providers, such as Cisco and Amazon.

The particle swarm method for function optimization has
been introduced by Kennedy and Eberhart in[8]. The ability
of groups of some species of animals to work as a whole in
locating desirable positions in a given area is simulated. It
has better ability of global searching and has been
successfully applied to many areas[9]. This algorithm is
predominately employed to find solutions for continuous
problem without prior information. Unfortunately, workflow
scheduling which is one of a variety of NP-completes is a
discrete and very complicated optimization issue. Several
approaches have been developed for PSO to solve discrete
problem, such as swap operation[10], angle modulation[11],
space transformation[12] and priority-based representation
[13]. Although various discrete PSO variants have been
proposed, their performance is generally not satisfactory
when compared with other meta-heuristics for discrete
optimization [18].

More recently, set-based concept is introduced into PSO
to solve combinatorial optimization problems, such as
determining RNA secondary structure[14],traveling salesman
problem (TSP) and multidimensional knapsack problem
(MKP)[15]. This concept has been proved to be promising.
Based on the set-based scheme, we use RDPSO to minimize
the total computation cost of cloud workflow.

The rest of this paper is organized as follows. Section 2
briefly describes the scheduling model in workflow, and
section 3 describes the proposed algorithm in detail. Section
4 shows the experimental results. Finally, section 5 addresses
the conclusions.

II. WORKFLOW TASK LEVEL SCHEDULING

A. Workflow Application Model
 A cloud workflow application can commonly be modelled

2010 International Conference on Computational Intelligence and Security

978-0-7695-4297-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CIS.2010.46

185

2010 International Conference on Computational Intelligence and Security

978-0-7695-4297-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CIS.2010.46

184

2010 International Conference on Computational Intelligence and Security

978-0-7695-4297-3/10 $26.00 © 2010 IEEE

DOI 10.1109/CIS.2010.46

184

as a Directed Acyclic Graph, denoted as),(:)(AVGAG �D .
The set of nodes � �nTTTV ,...,, 21� represents the tasks in the
workflow application; the set of arcs denotes precedence
constraints and the data dependencies between tasks. An arc
is in the form of ATTd jiji �� ,,

where
iT is called the

parent task of
jT ,

jT is the child task of iT ,
jid ,
is the

data produced by iT and consumed by
jT . We assume

that a child task cannot be executed until all of its parent
tasks have been completed.

Suppose that n tasks are to be scheduled on m
service instances. For each task)1(niTi �� in the
workflow, there are a set of candidate service instances

),...,,(21 im
iiii ssss � and a set of storage sites

),...,,(21 imDDDD � available, where)1(i
j

i ms � represents a
service instance provided by a GSP (Global Service Provider)
and im is the total number of service instances for iT . The

properties of a service instance j
is can be represented as a

group of three variables),,(cstsgs j
i

j
i

j
i ��� , in which

gs j
i � stands for the GSP of j

is while ts j
i � and

cs j
i � denote the execution time and cost of j

is , respectively.

Figure 1. A workflow with 9 tasks

Figure 2. Service instances and data storage

Fig. 1 shows a workflow application with 9 tasks, in which
the each task can be implemented by four service instances.
Fig. 2 shows the four service instances and the data storage,
they are fully connected and symmetric.

B. Task level scheduling Objectives
The task level scheduling mainly consists of the following

three steps: 1) Obtain the QoS constraints (in this paper QoS

constraints refer to makespan and cost. These are varying to
the user’s specific quality preference and their budget) for
each individual tasks. 2) Optimize the task-service
assignments. In cloud data centers, the underlying resources
are virtualized and can be created dynamically to suit the
needs of different cloud applications. 3) Implement the
optimal scheduling plan. Based on the above three steps, a
task level scheduling plan is implemented among the cloud
data centers to carry out the workflow execution with
satisfactory QoS. Meanwhile, the overall running cost of the
cloud workflow system has also been minimized.

There are several objectives can be measured for the
mapping of workflow tasks to distributed service. In the
cloud computing environment, computation cost is usually
the first priority of user’s concern. In this paper, we focus not
only on minimizing the total execution cost but also on
minimizing the total makespan of the workflow application.
Therefore, the major goal for our task level scheduling is to
decrease the computation cost on the condition of satisfying
the deadline of cloud workflow application by dynamically
optimizing the Task-to-Resource assignment.

Let
isT be the total makespan of the service iS ,)(MTtotal

be the total makespan (the overall completion time) of the
workflow application. It is the maximum of all the services
makespan. That is

1)max()(
istotal TMT �

Let)(MCexe
be the total execution cost of the workflow

scheduling M ,)(MCtrans
is the total data transmission cost

of the workflow scheduling M ,)(MCtotal
 be the total

computation cost of the workflow scheduling M . The
computation cost of a scheduling consists of the execution
cost and the data transfer cost.

)2()()()(MCMCMC transexetotal ��
The price for transferring basic data unit (e.g. per Mb)

between two services and the price for computation of basic
time unit (e.g. per hour) are given by the service providers.
The cost of communication is applicable only when two
tasks have data dependency between them. Usually, there is
no data transfer charge within the same region of the same
service provider. The objective function of this paper can be
defined as

)3())()((MCMTMinimize totaltotal �
Equation 3 ensures that all the tasks are not mapped to

a single service. Relatively heavy cost will be required to
initially distribute tasks to all resources. Subsequent
minimization of the overall cost ensures that the total cost is
minimal even after initial distribution. For a given
assignment M , the total cost)(MCtotal

 for a service is the
sum of execution cost.

186185185

III. THE PROPOSED ALGORITHM

A. Particle Swarm Optimizer
The original PSO algorithm was inspired by the social

behavior of biological organisms. Suppose that the searching
space is D-dimensional with N randomly initialized particles
in it. Each particle is represented by a D-dimensional vector
Xi (i=1, 2 d) which stands for its location (xi1, xi2 , xin) in
space and it is also regarded as a potential solution. The
position of the best individual of the whole swarm is noted as
the global best position Pg, and the fitness of the global best
position is noted as the global best fitness Fg. Then the
velocity of particle and its new position will be updated
according to the following two equations:

))()((2211
1 n

id
n
gd

n
id

n
id

n
id

n
id xprcxprcwvv 	�	���

 (4)
n
id

n
id

n
id vxx ���1

 (5)
Where, d=1,2, ,D; i=1,2, ,N; n=1,2, ,itermax (itermax

is the allowed largest iteration step); w is called inertia
weight; 1c and 2c are two positive constants called
acceleration coefficients;
 is a constriction factor, which

is used to limit the maximum velocity; 1r and 2r are two
random numbers uniformly from the interval [0, 1].

B. The Revised Discrete Swarm Model
The concept of particle swarm is originally designed to

find solutions for continuous optimization problems without
prior information. To solve the workflow scheduling problem,
a revised discrete version of PSO (RDPSO) based on the
concept of set-based is adopted in this paper. Similar to
conventional PSO, the key issue of DPSO is to define the
position and velocity of particle as well as to define their
operation rules and the equation of motion according to the
features of discrete variables.

For the sake of clarity, variables and the rules of DPSO
for solving workflow scheduling can be depicted in
definitions. In general, a mapping of workflow can be
defined by a set of pairs]),1[],,1[](,[njmiSTM ji ����� . m
is the number of tasks to be scheduled and n is the number of
services available in the cloud environment.

Definition 1: A position is a feasible solution to the
scheduling problem and consists of a set of <task, service>
pairs. Each pair means a mapping that task is mapped onto a
service .It also indicate that the position of each particle
satisfies the precedence constraint between activities.

Definition 2: A velocity is a set with possibilities.
}|)(/{ EeepeV �� , E is the set of <task, service> pairs.

]1,0[)(�ep , it shows the possibility of the task mapping to
the service.

Definition 3: Subtraction between two particle positions,

named as x1 and x2, is defined as a set of pairs which exist in
x1 but not in x2.This operator also know as relative
complement or set theoretic difference between two sets.

Definition 4: Multiplication between random real number
and velocity is defined as }|)(/{ ' EeepecV �� .

�
� �

�
otherwiseepc

epcif
ep

),(*
1)(*,1

)('

Definition5: Addition of two velocities is defined as
reservation of the larger one.

}|))(),(max(/{ 2121 EeepepeVV ���
Definition 6: New position generation is defined as a

constructive procedure. The constraints between tasks must
be taken into account. The <task, service> pairs in the
new j

iX can come from gbest, pbest, previous position or
other feasible pairs.

RDPSO based task level Scheduling

01 swarm initialization with GRASP;
02 calculate pbest and gbest;
03 while(stop criterion is not meted)
04 calculate Vp and Vg ;
05 construct the new position j

ix 1� ;
1: select pairs from � �ji

j
i Vepe ��)(/|eVP ;

2: if j
ix 1� is not completed, select pairs from j

ix ;
3: else if j

ix 1� is not completed, select pairs from
other feasible pairs;

06 calculate fitness value;
07 update pbest and gbest;
08 end while;
09 return gbest;

First, the algorithm starts with swarm initialization using
GRASP (greedy randomized adaptive search procedure) to
ensure each particle in the initial swarm is a feasible and
efficient solution. Then, compute the potential exemplars,
pbest and gbest, for particles to learn from while they are
moving. The stop condition can be the user’s QoS
requirements, such as deadline, the budget for computation
cost or data transfer cost. The particle’s new position
generation procedure has three steps: 1) select elements from
the promising set of pairs with larger probability, that is, the
particle learns from gbest and pbest; 2) due to the discrete
property of scheduling, there are usually not enough feasible
pairs in gbest to generate new position, so the particle will
learn from its previous position; 3) all the unmapped tasks
should choose resources from other feasible pairs. Fitness
function can be defined according to the objectives
mentioned in 2.2. Finally, gbest will be return as optimal
solution.

187186186

IV. EVLUATION

In this section we describe the experimental settings,
algorithm settings, the experimental results and discussions.

A. Environment and algorithm settings
Assume all tasks are executed on the Amazon Elastic

Compute Cloud (http://aws.amazon.com), all the data are
stored in Amazon Simple Storage Service and data
transmissions are fulfilled through the Amazon Cloud Front.
And assume that Service 1 and 2 to be in US, Service 3 in
Euro and Service 4 in APAC. Due to the varying price of
service, in the following simulation, the price at this moment
is adopted.

Cost of execution of Ti on Servicej is $0.17 per hour
(resources for high-CPU, on-demand instance medium
instances, Linux Usage). Taskcost = Tasktime * Price.

Data communication unit cost matrix is shown in Table
1. Each task has own input/output data and the sum of all
data in the matrix varies according to the data size we test
(64-2048M).

TABLE I. COST MATRIX OF DATA COMMUNICATION ($/MB/SECOND)

S1 S2 S3 S4

S1 0 0.01 0.15 0.19
S2 0.01 0 0.15 0.19
S3 0.15 0.15 0 0.20
S4 0.19 0.19 0.20 0

TABLE II. DATA INPUT/OUTPUT FOR EACH TASK (MB)

T2 T3 T4 T5 T6 T7 T8 T9

input 10 10 12 12 15 20 18 29
output 12 15 8 12 18 17 12 25

As for workflow, the number of total tasks ranges from
50 to 300 including both workflow and non-workflow
activities. The number of workflow segments increase
accordingly from 5 to 50. The number of resources is
constrained in the range of 3 to 20. QoS constraints
including time constraint and cost constraint for each task
are defined as follows: time constraint is defined as the
mean duration plus 1.28* variance and cost constraint
is defined as the triple of the corresponding time
constraint. The makespan of a workflow is defined as the
latest finished time on all the virtual machines and the
total cost of a workflow is defined as the sum of task
durations multiply the prices of their allocated virtual
machines. These settings are much similar to the
settings in[16].

As for RDPSO, the settings for parameters are:
Population size, n=50; the constriction factor 30.7�
 ; c1=c2=

2.0; Maximum fitness evaluations, me=3000; Refreshing gap,
m=7; Inertia weight, iwt = 0.9 - (1: me) * (0.7/me);
Pc=0.05+0.45*(exp (10(i-1)/ (ps-1))-1)/ (exp (10)-1).

B. Results and Analysis
First, we varied the size of total data processed by the

workflow depicted in Fig.1 in the range from 64M to 2G.
The total costs for different data size are compared. The data
in table 3 are the computation cost of the workflow with the
increase in the total data processed by the workflow.

The cost obtained by RDPSO or PSO based
task-service mapping increases much lower than the BRS
algorithm. The main reason for two PSOs to perform better
than the BRS is the way that they take communication costs
of all the tasks, including dependencies between them into
account. However, the BRS algorithm calculates the cost for
a single task at a time, which does not consider the mapping
of other tasks in the workflow. These results in PSO based
algorithm giving lower cost of execution as compared with
BRS based algorithm. On the other hand, PSO based
algorithm only considers “ready” tasks during scheduling
iteration and cannot get the global optimal solution. So,
RDPSO get better cost value than PSO based algorithm.

TABLE III. TOTAL COST FOR DIFFERENT SIZE OF DATA

Data
size(M)

64 128 256 512 1024 2048

RDPSO 56.7 61.2 68.6 89.9 118.3 288.4
PSO 80.41 86.23 93.4 181.5 246.5 643.7
BRS 259.5 488.68 904.3 2107.1 4342.7 7843.6

In order to further study the optimization ability
among the mentioned three algorithms, more complex
workflow applications are involved. Fig 3 plots the total
makespan optimization ratio of the three algorithms. From
Fig 3, we can see that BRS can get around 2% optimization
ratio, PSO can achieve from 6% to 8% optimization ratio,
RDPSO can get from 10% to 17% optimization ratio on the
whole makespan. PSO does not take makespan into account
when it evolves; RDPSO takes not only computation cost but
also whole makespan into account when it evolves. When
user’s requirement is specified, complete the workflow
application with the requirement constraint is very important,
so RDPSO is more applicable in cloud environment than
PSO.

We also compared the total computation cost
optimization ratio by varying the tasks number. The result is
plotted in Fig 4. From Fig 4, we can see that both PSO and
RDPSO can achieve relatively large optimization ratio.
These two algorithms take cost into account while they are
searching the optimal solutions. BRS only blindly choose the
best service.

188187187

Figure 3. The total makespan optimization ratio

Figure 4. The total computation cost optimization ratio

On the other hand, the conclusion we can draw from Fig.
4 is that when the task number of the workflow becomes
large, RDPSO optimization ratio increases relatively
dramatic. It means RDPSO can achieve lower cost for
executing the workflow. Take an example, when the task
number is 250, RDPSO can get more than 9% cost reduction
while PSO only get 6% cost reduction. So, when schedule
the large scale workflow application in cloud computing
environment, RDPSO is more promising than PSO.

V. CONCLUSION REMARKS

This paper presents a revised discrete particle swarm
optimization algorithm to optimize the schedules of
workflow application in cloud computing environment. In
this algorithm, the candidate solution is presented by the set
of task-service pairs, each particle not only learns from
different exemplars, but also learns the other feasible pairs
for different dimensions. The constructive position building
procedure guarantees each position is feasible. This scheme
greatly reduces the search space and enhances the algorithm
performance. Based on the simulation results, the new
algorithm yields outstanding performance on scheduling
workflow applications in cloud environment.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments which are helpful to improve the
presentation of the manuscript. This work is partially
supported by the National Natural Science Foundation of
China project (Grant No. 70871033).

REFERENCES

[1] B. Raghavan, et al., "Cloud control with distributed rate limiting,"
Proc. SIGCOMM’07, pp. 337 - 348, Kyoto, Japan, 2007.
[2] D. Ardagna and B. Pernici, "Adaptive service composition in flexible
processes," IEEE Transactions on Software Engineering, pp. 369-384, 2007.
[3] K. Bhattacharya, et al., "ICSE Cloud 09: First international workshop
on software engineering challenges for Cloud Computing," Proc. 31st
International Conference on Software Engineering - Companion Volume,.
(ICSE-Companion 2009), pp. 482-483. 2009
[4] W. Van der Aalst and K. Van Hee, Workflow management: models,
methods, and systems: The MIT press, 2004.
[5] I. Foster, Zhao Yong, I. Raicu, and S. Lu, "Cloud Computing and Grid
Computing 360-Degree Compared", Proc. Grid Computing Environments
workshop, 2008. GCE '08, pp. 1-10, 2008.
[6] D. Yuan, et al., "A data placement strategy in scientific cloud
workflows," Future Generation Computer Systems, pp. 1200-1214 2010.
[7] S. Pandey, et al., "A Particle Swarm Optimization-Based Heuristic for
Scheduling Workflow Applications in Cloud Computing Environments," in
Advanced Information Networking and Applications (AINA), 24th IEEE
International Conference on, pp. 400-407,2010.
[8] J. Kennedy and R. Eberhart, "Particle swarm optimization," Pro. The
IEEE International Conference on Neural Networks, pp. 1942-1948, Perth,
Australia, 1995.
[9] D. Bratton and J. Kennedy, "Defining a Standard for Particle Swarm
Optimization," in Swarm Intelligence Symposium, 2007. SIS 2007. IEEE,
2007, pp. 120-127.
[10] M. Clerc, "Discrete Particle Swarm Optimization, illustrated by the
Traveling Salesman Problem," New optimization techniques in
engineering(Springer), 2004.
[11] G. Pampara, et al., "Combining particle swarm optimisation with
angle modulation to solve binary problems," Proc.The IEEE Congress on
Evolutionary Computation , pp. 89-96, vol.1,2005.
[12] D. Sha and C. Hsu, "A hybrid particle swarm optimization for job
shop scheduling problem," Computers & Industrial Engineering, pp.
791-808, vol. 51,2006.
[13] J. Grobler, et al., "Metaheuristics for the multi-objective FJSP with
sequence-dependent set-up times, auxiliary resources and machine down
time," Annals of Operations Research, pp. 1-32, 2008.
[14] M. Neethling and A. P. Engelbrecht, "Determining RNA Secondary
Structure using Set-based Particle Swarm Optimization," IEEE Congress on
Evolutionary Computation, BC, Canada,pp. 1670-1677, 2006.
[15] C. Wei-Neng, et al., "A Novel Set-Based Particle Swarm
Optimization Method for Discrete Optimization Problems," IEEE
Transactions on Evolutionary Computation, , vol. 14, pp. 278-300, 2010.
[16] Z. Wu, et al., "A Market-Oriented Hierarchical Scheduling Strategy
in Cloud Workflow Systems," Journal of Supercomputing, Special issue on
Advances in Network&Parallel Comptg, to be appeared,2010.
[17] J. Yu and R. Buyya, "A Taxonomy of Workflow Management
Systems for Grid Computing," Journal of Grid Computing, no. 3, pp.
171-200, 2005.
[18] X. Liu, J. Chen, Z. Wu, Z. Ni, D. Yuan, Y. Yang, Handling
Recoverable Temporal Violations in Scientific Workflow Systems: A
Workflow Rescheduling Based Strategy. Proc. of 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid2010), pages 534-537, Melbourne, Australia, May 2010.

189188188

