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Abstract-A cloud workflow system is a type of platform 
service which facilitates the automation of distributed 
applications based on the novel cloud infrastructure. Compared 
with grid environment, data transfer is a big overhead for cloud 
workflows due to the market-oriented business model in the 
cloud environments. In this paper, a Revised Discrete Particle 
Swarm Optimization (RDPSO) is proposed to schedule 
applications among cloud services that takes both data 
transmission cost and computation cost into account.
Experiment is conducted with a set of workflow applications by 
varying their data communication costs and computation costs 
according to a cloud price model. Comparison is made on 
makespan and cost optimization ratio and the cost savings with 
RDPSO, the standard PSO and BRS (Best Resource Selection) 
algorithm. Experimental results show that the proposed 
RDPSO algorithm can achieve much more cost savings and 
better performance on makespan and cost optimization.

Keywords: discrete particle swarm optimization, workflow 
scheduling, cloud computing.  

I.    INTRODUCTION

Cloud computing is emerging as the latest distributed 
computing paradigm and attracts increasing interests of 
researchers in the area of Distributed and Parallel 
Computing[1], Service Oriented Computing[2] and Software 
Engineering[3]. Generally speaking, the function of a cloud 
workflow system and its role in a cloud computing 
environment, is to facilitate the automation of user submitted 
workflow applications where the tasks have precedence 
relationships defined by graph-based modeling tools such as 
DAG (directed acyclic graph) and Petri Nets[4], or 
language-based modeling tools such as XPDL (XML Process 
Definition Language)[17].

Among many others, one of the most important aspects 
which differentiate a cloud workflow system from its other 
counterparts is the market-oriented business model. Such a 
seemed small change actually brings significant innovations 
to conventional computing paradigms since they are usually 
based on non-business community models where resources 
are shared and free to be accessed by community 
members[5]. Meanwhile, application data can be hosted on 
different storage resources at the global cloud infrastructure. 
When one task needs to process data from different data  

centers, moving the data becomes a challenge[6]. In order to 
efficiently and cost effectively schedule the tasks and data of 
applications among cloud services, end user QoS-based 
scheduling strategies are implemented, such as those for 
minimizing makespan, minimizing total execution cost and 
balancing the load of resources[7]. In this paper, we focus on 
minimizing the execution time and the execution cost of 
applications on these resources provided by Cloud service 
providers, such as Cisco and Amazon.

The particle swarm method for function optimization has 
been introduced by Kennedy and Eberhart in[8]. The ability 
of groups of some species of animals to work as a whole in 
locating desirable positions in a given area is simulated. It 
has better ability of global searching and has been 
successfully applied to many areas[9]. This algorithm is 
predominately employed to find solutions for continuous 
problem without prior information. Unfortunately, workflow 
scheduling which is one of a variety of NP-completes is a 
discrete and very complicated optimization issue. Several 
approaches have been developed for PSO to solve discrete 
problem, such as swap operation[10], angle modulation[11], 
space transformation[12] and priority-based representation 
[13]. Although various discrete PSO variants have been 
proposed, their performance is generally not satisfactory 
when compared with other meta-heuristics for discrete 
optimization [18].  

More recently, set-based concept is introduced into PSO 
to solve combinatorial optimization problems, such as 
determining RNA secondary structure[14],traveling salesman 
problem (TSP) and multidimensional knapsack problem 
(MKP)[15]. This concept has been proved to be promising. 
Based on the set-based scheme, we use RDPSO to minimize 
the total computation cost of cloud workflow. 

The rest of this paper is organized as follows. Section 2 
briefly describes the scheduling model in workflow, and 
section 3 describes the proposed algorithm in detail. Section 
4 shows the experimental results. Finally, section 5 addresses 
the conclusions. 

II.    WORKFLOW TASK LEVEL SCHEDULING 

A.  Workflow Application Model 
    A cloud workflow application can commonly be modelled 
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as a Directed Acyclic Graph, denoted as ),(:)( AVGAG �D .              
The set of nodes � �nTTTV ,...,, 21� represents the tasks in the 
workflow application; the set of arcs denotes precedence 
constraints and the data dependencies between tasks. An arc 
is in the form of ATTd jiji �� ,,

where
iT is called the 

parent task of
jT ,

jT is the child task of iT ,
jid ,
is the 

data produced by iT and consumed by 
jT . We assume 

that a child task cannot be executed until all of its parent 
tasks have been completed. 

Suppose that n tasks are to be scheduled on m
service instances. For each task )1( niTi ��  in the 
workflow, there are a set of candidate service instances 

),...,,( 21 im
iiii ssss � and a set of storage sites 

),...,,( 21 imDDDD �  available, where )1( i
j

i ms � represents a 
service instance provided by a GSP (Global Service Provider) 
and im is the total number of service instances for iT . The 

properties of a service instance j
is can be represented as a 

group of three variables ),,( cstsgs j
i

j
i

j
i ��� , in which 

gs j
i � stands for the GSP of j

is while ts j
i � and

cs j
i � denote the execution time and cost of j

is , respectively.  

Figure 1.  A workflow with 9 tasks 

Figure 2. Service instances and data storage 

Fig. 1 shows a workflow application with 9 tasks, in which 
the each task can be implemented by four service instances. 
Fig. 2 shows the four service instances and the data storage, 
they are fully connected and symmetric. 

B.  Task level scheduling Objectives  
The task level scheduling mainly consists of the following 

three steps: 1) Obtain the QoS constraints (in this paper QoS 

constraints refer to makespan and cost. These are varying to 
the user’s specific quality preference and their budget) for 
each individual tasks. 2) Optimize the task-service 
assignments. In cloud data centers, the underlying resources 
are virtualized and can be created dynamically to suit the 
needs of different cloud applications. 3) Implement the 
optimal scheduling plan. Based on the above three steps, a 
task level scheduling plan is implemented among the cloud 
data centers to carry out the workflow execution with 
satisfactory QoS. Meanwhile, the overall running cost of the 
cloud workflow system has also been minimized.  

There are several objectives can be measured for the 
mapping of workflow tasks to distributed service. In the 
cloud computing environment, computation cost is usually 
the first priority of user’s concern. In this paper, we focus not 
only on minimizing the total execution cost but also on 
minimizing the total makespan of the workflow application. 
Therefore, the major goal for our task level scheduling is to 
decrease the computation cost on the condition of satisfying 
the deadline of cloud workflow application by dynamically 
optimizing the Task-to-Resource assignment.  

Let 
isT be the total makespan of the service iS , )(MTtotal

be the total makespan (the overall completion time) of the 
workflow application. It is the maximum of all the services 
makespan. That is

1)max()(
istotal TMT �

Let )(MCexe
be the total execution cost of the workflow 

scheduling M , )(MCtrans
is the total data transmission cost 

of the workflow scheduling M , )(MCtotal
 be the total 

computation cost of the workflow scheduling M . The 
computation cost of a scheduling consists of the execution 
cost and the data transfer cost.                 

)2()()()( MCMCMC transexetotal ��
The price for transferring basic data unit (e.g. per Mb)

between two services and the price for computation of basic 
time unit (e.g. per hour) are given by the service providers. 
The cost of communication is applicable only when two 
tasks have data dependency between them. Usually, there is 
no data transfer charge within the same region of the same 
service provider. The objective function of this paper can be 
defined as

)3())()(( MCMTMinimize totaltotal �
Equation 3 ensures that all the tasks are not mapped to 

a single service. Relatively heavy cost will be required to 
initially distribute tasks to all resources. Subsequent 
minimization of the overall cost ensures that the total cost is 
minimal even after initial distribution. For a given 
assignment M , the total cost )(MCtotal

 for a service is the 
sum of execution cost. 
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III. THE PROPOSED ALGORITHM

A.  Particle Swarm Optimizer 
The original PSO algorithm was inspired by the social 

behavior of biological organisms. Suppose that the searching 
space is D-dimensional with N randomly initialized particles 
in it. Each particle is represented by a D-dimensional vector 
Xi (i=1, 2 d) which stands for its location (xi1, xi2 , xin) in 
space and it is also regarded as a potential solution. The
position of the best individual of the whole swarm is noted as 
the global best position Pg, and the fitness of the global best 
position is noted as the global best fitness Fg. Then the 
velocity of particle and its new position will be updated 
according to the following two equations:

))()(( 2211
1 n

id
n
gd

n
id

n
id

n
id

n
id xprcxprcwvv 	�	��� 


 (4) 
n
id

n
id

n
id vxx ���1

                 (5) 
Where, d=1,2, ,D; i=1,2, ,N; n=1,2, ,itermax (itermax

is the allowed largest iteration step); w  is called inertia 
weight; 1c  and 2c  are two positive constants called 
acceleration coefficients; 
  is a constriction factor, which 

is used to limit the maximum velocity; 1r  and 2r  are two 
random numbers uniformly from the interval [0, 1].  

B.  The Revised Discrete Swarm Model 
The concept of particle swarm is originally designed to 

find solutions for continuous optimization problems without 
prior information. To solve the workflow scheduling problem, 
a revised discrete version of PSO (RDPSO) based on the 
concept of set-based is adopted in this paper. Similar to 
conventional PSO, the key issue of DPSO is to define the 
position and velocity of particle as well as to define their 
operation rules and the equation of motion according to the 
features of discrete variables. 

For the sake of clarity, variables and the rules of DPSO
for solving workflow scheduling can be depicted in 
definitions. In general, a mapping of workflow can be 
defined by a set of pairs ]),1[],,1[](,[ njmiSTM ji ����� . m
is the number of tasks to be scheduled and n is the number of 
services available in the cloud environment. 

Definition 1: A position is a feasible solution to the 
scheduling problem and consists of a set of <task, service> 
pairs. Each pair means a mapping that task is mapped onto a 
service .It also indicate that the position of each particle 
satisfies the precedence constraint between activities. 

Definition 2: A velocity is a set with possibilities. 
}|)(/{ EeepeV �� , E is the set of <task, service> pairs.

]1,0[)( �ep , it shows the possibility of the task mapping to 
the service. 

Definition 3: Subtraction between two particle positions,

named as x1 and x2, is defined as a set of pairs which exist in 
x1 but not in x2.This operator also know as relative 
complement or set theoretic difference between two sets.

Definition 4: Multiplication between random real number 
and velocity is defined as }|)(/{ ' EeepecV �� . 


�
� �

�
otherwiseepc

epcif
ep

),(*
1)(*,1

)('

Definition5: Addition of two velocities is defined as 
reservation of the larger one. 

}|))(),(max(/{ 2121 EeepepeVV ���
Definition 6: New position generation is defined as a 

constructive procedure. The constraints between tasks must 
be taken into account. The <task, service> pairs in the 
new j

iX  can come from gbest, pbest, previous position or 
other feasible pairs.

RDPSO based task level Scheduling 

01 swarm initialization with GRASP; 
02 calculate pbest and gbest; 
03 while(stop criterion is not meted) 
04 calculate Vp and Vg ;
05 construct the new position j

ix 1� ; 
1: select pairs from � �ji

j
i Vepe �� )(/|eVP ; 

2: if j
ix 1� is not completed, select pairs from j

ix ; 
3: else if j

ix 1� is not completed, select pairs from
other feasible pairs; 

06 calculate fitness value; 
07 update pbest and gbest; 
08 end while; 
09 return gbest; 

First, the algorithm starts with swarm initialization using 
GRASP (greedy randomized adaptive search procedure) to 
ensure each particle in the initial swarm is a feasible and 
efficient solution. Then, compute the potential exemplars, 
pbest and gbest, for particles to learn from while they are 
moving. The stop condition can be the user’s QoS 
requirements, such as deadline, the budget for computation 
cost or data transfer cost. The particle’s new position 
generation procedure has three steps: 1) select elements from 
the promising set of pairs with larger probability, that is, the 
particle learns from gbest and pbest; 2) due to the discrete 
property of scheduling, there are usually not enough feasible 
pairs in gbest to generate new position, so the particle will 
learn from its previous position; 3) all the unmapped tasks 
should choose resources from other feasible pairs. Fitness 
function can be defined according to the objectives 
mentioned in 2.2.  Finally, gbest will be return as optimal 
solution. 
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IV. EVLUATION

In this section we describe the experimental settings,
algorithm settings, the experimental results and discussions. 

A. Environment and algorithm settings 
Assume all tasks are executed on the Amazon Elastic 

Compute Cloud (http://aws.amazon.com), all the data are 
stored in Amazon Simple Storage Service and data 
transmissions are fulfilled through the Amazon Cloud Front.
And assume that Service 1 and 2 to be in US, Service 3 in 
Euro and Service 4 in APAC. Due to the varying price of 
service, in the following simulation, the price at this moment 
is adopted.  

Cost of execution of Ti on Servicej is $0.17 per hour 
(resources for high-CPU, on-demand instance medium 
instances, Linux Usage). Taskcost = Tasktime * Price.  

Data communication unit cost matrix is shown in Table 
1. Each task has own input/output data and the sum of all 
data in the matrix varies according to the data size we test 
(64-2048M). 

TABLE I. COST MATRIX OF DATA COMMUNICATION ($/MB/SECOND)

S1 S2 S3 S4

S1 0 0.01 0.15 0.19
S2 0.01 0 0.15 0.19
S3 0.15 0.15 0 0.20
S4 0.19 0.19 0.20 0

TABLE II. DATA INPUT/OUTPUT FOR EACH TASK (MB) 

T2 T3 T4 T5 T6 T7 T8 T9

input 10 10 12 12 15 20 18 29
output 12 15 8 12 18 17 12 25

As for workflow, the number of total tasks ranges from 
50 to 300 including both workflow and non-workflow 
activities. The number of workflow segments increase 
accordingly from 5 to 50. The number of resources is 
constrained in the range of 3 to 20. QoS constraints 
including time constraint and cost constraint for each task 
are defined as follows: time constraint is defined as the 
mean duration plus 1.28* variance  and cost constraint 
is defined as the triple of the corresponding time 
constraint. The makespan of a workflow is defined as the 
latest finished time on all the virtual machines and the 
total cost of a workflow is defined as the sum of task 
durations multiply the prices of their allocated virtual 
machines.  These settings are much similar to the 
settings in[16].

As for RDPSO, the settings for parameters are: 
Population size, n=50; the constriction factor 30.7�
 ; c1=c2= 

2.0; Maximum fitness evaluations, me=3000; Refreshing gap,
m=7; Inertia weight, iwt = 0.9 - (1: me) * (0.7/me); 
Pc=0.05+0.45*(exp (10(i-1)/ (ps-1))-1)/ (exp (10)-1). 

B. Results and Analysis  
First, we varied the size of total data processed by the 

workflow depicted in Fig.1 in the range from 64M to 2G.
The total costs for different data size are compared. The data 
in table 3 are the computation cost of the workflow with the 
increase in the total data processed by the workflow. 

The cost obtained by RDPSO or PSO based 
task-service mapping increases much lower than the BRS 
algorithm. The main reason for two PSOs to perform better 
than the BRS is the way that they take communication costs 
of all the tasks, including dependencies between them into 
account. However, the BRS algorithm calculates the cost for 
a single task at a time, which does not consider the mapping 
of other tasks in the workflow. These results in PSO based 
algorithm giving lower cost of execution as compared with 
BRS based algorithm. On the other hand, PSO based
algorithm only considers “ready” tasks during scheduling 
iteration and cannot get the global optimal solution. So, 
RDPSO get better cost value than PSO based algorithm. 

TABLE III. TOTAL COST FOR DIFFERENT SIZE OF DATA

Data 
size(M)

64 128 256 512 1024 2048

RDPSO 56.7 61.2 68.6 89.9 118.3 288.4
PSO 80.41 86.23 93.4 181.5 246.5 643.7
BRS 259.5 488.68 904.3 2107.1 4342.7 7843.6

In order to further study the optimization ability 
among the mentioned three algorithms, more complex 
workflow applications are involved. Fig 3 plots the total 
makespan optimization ratio of the three algorithms. From 
Fig 3, we can see that BRS can get around 2% optimization 
ratio, PSO can achieve from 6% to 8% optimization ratio, 
RDPSO can get from 10% to 17% optimization ratio on the 
whole makespan. PSO does not take makespan into account 
when it evolves; RDPSO takes not only computation cost but 
also whole makespan into account when it evolves. When 
user’s requirement is specified, complete the workflow 
application with the requirement constraint is very important, 
so RDPSO is more applicable in cloud environment than 
PSO. 

We also compared the total computation cost 
optimization ratio by varying the tasks number. The result is 
plotted in Fig 4. From Fig 4, we can see that both PSO and 
RDPSO can achieve relatively large optimization ratio. 
These two algorithms take cost into account while they are 
searching the optimal solutions. BRS only blindly choose the 
best service. 
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Figure 3.  The total makespan optimization ratio 

Figure 4.  The total computation cost optimization ratio

On the other hand, the conclusion we can draw from Fig. 
4 is that when the task number of the workflow becomes 
large, RDPSO optimization ratio increases relatively 
dramatic. It means RDPSO can achieve lower cost for 
executing the workflow. Take an example, when the task 
number is 250, RDPSO can get more than 9% cost reduction 
while PSO only get 6% cost reduction. So, when schedule 
the large scale workflow application in cloud computing 
environment, RDPSO is more promising than PSO.

V. CONCLUSION REMARKS

This paper presents a revised discrete particle swarm 
optimization algorithm to optimize the schedules of 
workflow application in cloud computing environment. In 
this algorithm, the candidate solution is presented by the set 
of task-service pairs, each particle not only learns from 
different exemplars, but also learns the other feasible pairs 
for different dimensions. The constructive position building 
procedure guarantees each position is feasible. This scheme 
greatly reduces the search space and enhances the algorithm 
performance. Based on the simulation results, the new 
algorithm yields outstanding performance on scheduling 
workflow applications in cloud environment. 
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